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A confined electron spherical void model generalized from the rectangular box one is used for the discussion
of the radical spectrum emitted from nonhomogeneous hot dense helium gas in sonoluminescence. The
theoretical analysis shows that the gas can emit a continuous spectrum from 3s to 2p that fits with the
experimental data in the visible window of single-bubble sonoluminescence.

The confined electron model of an atom was used for the
interpretation of the mechanism of the continuous spectrum for
single-bubble sonoluminescence (SBSL).1 The model assumes
that electrons are confined in a rectangular box with variable
size and discusses the transition radiation. For a certain void
size, the particle-in-a-void model predicts discrete emission lines.
Blurring of these emission lines, due to the distribution of void
dimensions, produces a continuous spectrum. Gas in a collapse
bubble is in a nonhomogeneous hot dense state in SBSL.2 Two
important facts are clarified in ref 1 one is that the distribution
of the dimension of the confined electron voids can make the
discrete emission spectrum continuous, the other is that the
continuous spectrum depends on two parameters at least for a
certain nonhomogeneous system, which is apparent in the means
of thermodynamics. The equilibrium thermal emission spectrum
depends only on one parameter, the temperatureT. To describe
the nonhomogeneous state, we need another parameter. As we
know, the distribution of the electrons in an atom is close to a
spherical shape, which is more natural and compendious than
a rectangular box, so a spherical void model is generalized from
the rectangular one. In this letter, we will use the method of
Michels et al.3 for the transition radiation of helium gas in SBSL,
assuming electrons are confined in a spherical void with the
radiusr0. With the postulate of the most probable distribution,
the radius r0 has a Gaussian distribution. The theoretical
spectrum of the transition from 3s to 2p fits the experimental
data in the visible window of SBSL2,4 smoothly.

First, we consider the homogeneous hot dense gas of helium.
If the electrons are confined in a spherical void with a radius
r0, the wave function of helium molecule can be written as

whereψ1 andψ2 are the wave functions of the two electrons,
respectively. Moreover,ψ1 andψ2 can be approximately treated
as the wave functions of the hydrogen atom satisfying the
equation

whereĤ(t) ) Ĥ0 + Ĥ(t) (Ĥ′(t) is the part of time-dependent
perturbation). ForĤ′(t) ) 0, we haveψ ) ∑nanφn, φn )

æne-i/hEnt, æn is proper function of the time-independent part
Ĥ0. The equation of the radial part ofφn can be written as
follows (in atomic units)

whereE is the total energy andl is the angular quantum number.
In this model, the wave function must have a zero point atr )
r0.

DefiningF ) 2r/n andE ) -1/(2n2), we can obtain the radial
part of the wave function as

whereF(l+1-n,2l+2,F) is a confluent hypergeometric function.
The boundary condition here isR(r0) ) e-(1/2)F0F0

l F(F0) ) 0. It
is difficult to find an analytical expression of the confluent
hypergeometric function, so we will discuss the numerical
solution based on dividing the total energy into different regions.
Some approximate steps are needed to get the numerical solution
here.

WhenE < 0 andr0 is infinite, n is equal to the main quantum
number. Ifr0 is not infinite but still large enough thatn is nearly
the main quantum number, we can writen ) N + â, whereN
is the main quantum number, andâ is the retouch. When the
hydrogen atom is free,n is equal to the main quantum number
N, and the boundary condition gives a polynomial. For the
nonzeroâ, the boundary condition gives an infinite series, which
can be used for findâ.3 The equations ofâ for 2p and 3s are

Whenn is an integer, the confluent hypergeometric function
degenerates into a derivative of a Laguerre polynomial
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where

For the rest part of this region, we can use interpolation
procedure to find the numerical solution.

Whenn is infinite, the total energy is zero. In this case, the
confluent hypergeometric function can be simplified as a Bessel
function as follows

The nodes of the Bessel function correspond to the points where
the total energy is zero, and the radii related arer02p* ) 5.08831
and r03s* ) 12.9374, respectively.

WhenE > 0, the numbern is a pure imaginary. The confluent
hypergeometric function degenerates into anM function5

where

WhenE f ∞, we can setn approach to zero in the eq 3 and
F ) 2rn-1 ) 2irx2E. Then the radial part ofφn is theBessel
function as

and we can educe the functions of asymptote as follows

From these equations,E-1/2 ) E-1/2(r0) are straight lines through
the origin, and these lines are tangents to (E-1/2, r0) curves at
zero point. At the same time,r0 ) r0* is an asymptote of the
(E-1/2, r0) curve. Therefore, we can define asE-1/2 ) 2r0*k/π
tan(r0π/2r0*), wherek is the tangential slope. As above stated,
we can give the whole (E, r0) curve as shown in Figure 1.

In atomic units, the transition probability isw ∝ |r21|2, and
the transition frequency isυ21 ) E2 - E1, where r21 )
∫0

r0R1* rR2r2 dr, R1(r) and R2(r) are normalized radial wave
functions of initial and final states for the transition, respectively.
One energy unit corresponds to the energy of a photon whose
wavelength is 45.588 nm in this unit. Therefore, we may give
the relation (w, r0) and (υ, r0) for the transition between 2p and
3s, because the transitions between the two lower excited energy
levels is required to describe the emission spectrum within the
200-700 nm wavelength region covered by the SBSL experi-
ments.

A nonhomogeneous hot dense gas in a bubble can be regarded
as an assembly of many molecular clusters. Each cluster can
come to a homogeneous equilibrium state quickly if the gas
molecules collide sharply, and it has a certain pressure and
temperature. Moreover, there is a continuous distribution for
pressure and density in the bubble due to the nonhomogeneous
character of the gas. It means that the pressure and the
temperature are different in different clusters. For the model of
electrons confined in a spherical void with the radiusr0,3 the
kinetic energy of electrons and nuclei of each cluster in the
bubble is given by

whereE is the total energy. The virial theorem for the gas of
pressureP and volumeV gives

Above equations show that the pressureP of a cluster determines
the average spherical radiusr0. In the cluster, the continuous
distribution for pressure in the bubble will make the radiusr0

has a continuous distribution too, as a result the spectrum will
become continuous.

Let a is the mean radius of spherical voids in the bubble. If
the distribution of the radiusr0 is f(r0 - a), it must satisfy the
following relations

and

whereσ is a parameter to be confirmed. Therefore, the most
probable distribution off(r0 - a) is approximately a Gaussian
one

whereA is a normalization constant. This means that there exist
two free parameters in the description, which is similar to the
D(a) in the rectangular model.1 The light intensity due to
transition is given byI(r0) ) Bf(r0) w(r0) υ(r0), where the
coefficientB includes the effect of the initial gas atom number
and the ionization efficiency. Therefore, the relationship between
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Figure 1. (E, r0) curves of the 2p and 3s energy levels in atomic units.
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light intensity and wavelength may be described as the curve
shown in Figure 2, wherea ) 1.54 Å andσ ) 8.2 Å2.

In the Figure 2, the cycles represent the experimental data of
the bubble filling with helium in water.3,4 The figure shows that

the theoretical spectrum of the transition from 3s to 2p fits with
the experimental data in the visible window of SBSL smoothly.
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Figure 2. (I, λ) curve of the transition from 3s to 2p, and the cycles
represent the experimental data of the bubble filling with helium in
water.
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