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A Confined Electron Spherical Void Model in Sonoluminescence
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A confined electron spherical void model generalized from the rectangular box one is used for the discussion

of the radical spectrum emitted from nonhomogeneous hot dense helium gas in sonoluminescence. The
theoretical analysis shows that the gas can emit a continuous spectrum from 3s to 2p that fits with the

experimental data in the visible window of single-bubble sonoluminescence.

The confined electron model of an atom was used for the ggne*"hEnt, @n is proper function of the time-independent part
interpretation of the mechanism of the continuous spectrum for Ho. The equation of the radial part @f, can be written as
single-bubble sonoluminescence (SBSMhe model assumes  follows (in atomic units)
that electrons are confined in a rectangular box with variable
size and discusses the transition radiation. For a certain void drR 2dR [ 2 1(1+1)

size, the particle-in-a-void model predicts discrete emission lines. ? + Tdr +[2EF T 2

Blurring of these emission lines, due to the distribution of void
dimensions, produces a continuous spectrum. Gas in a collapsgyherek s the total energy anids the angular quantum number.

bubble is in a nonhomogeneous hot dense state in SHSI0 |1, this model, the wave function must have a zero pointat
important facts are clarified in ref 1 one is that the distribution

of the dimension of the confined electron voids can make the OIDefiningp = 2r/n andE = —1/(2n?), we can obtain the radial
discrete emission spectrum continuous, the other is that thepart of the wave function as '

continuous spectrum depends on two parameters at least for a
certain nonhomogeneous system, which is apparent in the means
of thermodynamics. The equilibrium thermal emission spectrum
depends only on one parameter, the temperdiif® describe  \hereF(+1-n,2+2,) is a confluent hypergeometric function.
the nonhomogeneous state, we need another parameter. As Wgo boundary condition here R{ro) = e @2oiF(pg) = 0. It
know, the distribution of the electrons in an atom is close to a i gifficult to find an analytical expression of the confluent

spherical shape, which is more natural and compendious tha”hypergeometric function, so we will discuss the numerical

arectangular box, so a spherical void model is generalized from ¢, ,tion based on dividing the total energy into different regions.

the rectangular one. In this letter, we will use the method of gome approximate steps are needed to get the numerical solution
Michels et ak for the transition radiation of helium gas in SBSL, here.

assuming electrons are confined in a spherical void with the  \whenE < 0 andro is infinite, nis equal to the main quantum
radiusro. With the postulate of the most probable distribution, ,,mper. Ifr, is not infinite but still large enough thatis nearly

the radiusry has a Qaussian distributiqn. The thec_)retical the main quantum number, we can write= N -+ /3, whereN
spectrum of the transition from 3s to 2p fits the experimental 5 the main quantum number, afidis the retouch. When the

data in the visible window of SBSL* smoothly. _hydrogen atom is free is equal to the main quantum number
First, we consider the homogeneous hot dense gas of hellum.N’ and the boundary condition gives a polynomial. For the

If the electrons are confined in a spherical void with a radius \,n;6r03, the boundary condition gives an infinite series, which
ro, the wave function of helium molecule can be written as ., he used for fings.3 The equations of for 2p and 3s are

R=0 ©)

R=e M p'F(1+1-n,21+2,0) (4)

Y=y, (1) 1
Bop=—"—"— )
wherey; andy, are the wave functions of the two electrons, e 1 v
respectively. Moreovery; andy, can be approximately treated 6 —|r0
as the wave functions of the hydrogen atom satisfying the =10(0 + 3)!
equation 2 2
1——ry+—r1y
Loy _ _ 3 27
h—t =AMy, =12 @  Bae=— .
R o 223 Claro)’ + =ty — —14°
whereH(t) = Ho + H(t) (H'(t) is the part of time-dependent =s0(0 — )0 — 2)(o + 1)! 9 81
perturbation). ForH'(t) = 0, we havey = Ypapn, ¢n = (6)
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(n=1=1)! 54y °r

F(+1-n,242,0) = WLmH(p) @) of

n—1—1 L

8|

where 7H

@+2), =@ +2)@A+3)..[(2A+2)+

h—-1-1)-1 2,
w
3s)
For the rest part of this region, we can use interpolation °r
procedure to find the numerical solution. 2r
Whenn is infinite, the total energy is zero. In this case, the 1 2p
confluent hypergeometric function can be simplified as a Bessel of
function as follows Y S . : . . . .
0 2 4 6 8 10 12 14
lim F(l4+1-n,2+2,0) = J,.,(2vNnp) = J,,,(2vV2r) (8) fo
n—oo Figure 1. (E, ro) curves of the 2p and 3s energy levels in atomic units.

The nodes of the Bessel function Correspond to the pOintS where A nonhomogeneous hot dense gas in a bubble can be regarded
the total energy is zero, and the radii relatedrgsgf = 5.08831 35 an assembly of many molecular clusters. Each cluster can

androsd® = 12.9374, respectively. come to a homogeneous equilibrium state quickly if the gas
WhenE > 0, the numben is a pure imaginary. The confluent  molecules collide sharply, and it has a certain pressure and
hypergeometric function degenerates intoMufunctior temperature. Moreover, there is a continuous distribution for

(1), 12 pressure and density in the bubble due to the nonhomogeneous
F(+1-n,24+2,0) = p 7€M, 2141)2(0) 9) character of the gas. It means that the pressure and the
temperature are different in different clusters. For the model of

where electrons confined in a spherical void with the radiyg the
Lo+l kinetic energy of electrons and nuclei of each cluster in the
M, .(p) = (p*1) (pt1y2 1 (1- bubble is given by
yp2\P Y _
p+1 p+1 1
21+ < 0E
1—tw T= —rOar —E (14)
2\(p-1)/2[ L — (p/2)t 0
) 2(Ht) P2t gt (10)

whereE is the total energy. The virial theorem for the gas of
WhenE — o, we can seh approach to zero in the eq 3 and pressureP® and volumeV gives

p = 2rn~1 = 2irv/2E. Then the radial part o, is the Bessel _
function as AT =3A(PV) — AE (15)

Above equations show that the presdaie a cluster determines
the average spherical radiug In the cluster, the continuous
distribution for pressure in the bubble will make the radigis
has a continuous distribution too, as a result the spectrum will

R= ~]|+(1/2)("‘/E) (11)

and we can educe the functions of asymptote as follows

become continuous.
E2p — ML?’;”'% 12) Let ais the mean radius of spherical voids in the bubble. If
2rg the distribution of the radiug, is f(ro — @), it must satisfy the
following relations
9
E..=— 13 o
5= g 2 (13) [ 1(ry — ad(ry — 8) = 1 (16)

From these equationg; Y2 = E~Yqr¢) are straight lines through ~ and

the origin, and these lines are tangentsEo'(, rq) curves at

zero point. At the same timeg = ro* is an asymptote of the fjo (ro— a)21‘(r0 —adrr,—a)=o a7)
(E"2, rg) curve. Therefore, we can define Bs'/2 = 2ro*kin 2

tan(o/2rg*), wherek is the tangential slope. As above stated, whereo is a parameter to be confirmed. Therefore, the most

we can give the whole ro) curve as shown in Figure 1. probable distribution of(ro — a) is approximately a Gaussian
In atomic units, the transition probability i8 O |rp1/%, and one

the transition frequency %, = E, — Ej, wherery; =

fBORl*rRer dr, Ry(r) and Ry(r) are normalized radial wave f(ro) = A 1 e—(ro—a)z/ZU (18)

functions of initial and final states for the transition, respectively. o N

One energy unit corresponds to the energy of a photon whose

wavelength is 45.588 nm in this unit. Therefore, we may give whereA is a normalization constant. This means that there exist
the relation W, ro) and @, ro) for the transition between 2p and two free parameters in the description, which is similar to the
3s, because the transitions between the two lower excited energyD(a) in the rectangular modél.The light intensity due to
levels is required to describe the emission spectrum within the transition is given byl(ro) = Bf(rg) w(rg) v(ro), where the
200-700 nm wavelength region covered by the SBSL experi- coefficientB includes the effect of the initial gas atom number
ments. and the ionization efficiency. Therefore, the relationship between
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T the theoretical spectrum of the transition from 3s to 2p fits with
the experimental data in the visible window of SBSL smoothly.
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